Wheat Grazeout versus Harvest for Grain

January 2018

Roger Sahs
Assistant Extension Specialist

Eric DeVuyst
Professor, Farm and Production Management

An important role of the farm manager is planning for the future. Planning includes taking an inventory of resources, considering alternative uses for resources, estimating costs and returns associated with the alternate uses, and choosing the “best” alternative. The manager can organize financial and physical plans by budgeting.

Many changes do not require a complete reorganization of the farm or ranch. The manager can use resources in more than one way when responding to changes in product price levels and cropping patterns. Partial budgets are useful in evaluating changes such as expanding an enterprise, adding a new enterprise, changing production practices, and buying new machinery.

Principles of Partial Budgeting

Partial budgets estimate the economic effect of minor adjustments in some part of the farm business. With partial budgeting, the manager assumes that many aspects of the business are fixed in the short-term. He or she uses partial budgets to evaluate changes in resources that are not fixed. Partial budgeting is based on the principle that a small change in the organization of a farm business will eliminate or reduce some costs and returns, while possibly also adding or increasing costs or revenues. The net economic effect of a change will be the sum of the positive economic effects minus the sum of the negative effects.

Wheat Grazeout versus Wheat Harvest for Grain

A partial budget (Table 1) may be used to decide whether to graze out or harvest wheat for grain. The decision is made prior to first hollow stem and is based on expected yields and prices of wheat and stockers. Prices are a main determinant in the decision and are estimated for the future. By combining known figures with estimates of future yields and prices, the farm manager can compare alternative plans of action for profitability. Prices and yields data should be updated and customized for an individual situation. Other factors that can affect grazeout profitability include stocking rate, value of gain, weather and the grazing length of time. The budget below is prepared on a per-head basis with a stocking rate, for an additional 60 days, of one steer per acre of wheat. Additional information includes:

* adapted from OSU Fact Sheet AGEC-142 (Partial Budgeting in Farm Management, Kuhlman, Casey and Jobes, Jan. 1978 and updated from Doye and Coe)

Table 1. Partial Budget, Wheat Grazeout versus Harvest for Grain.

<table>
<thead>
<tr>
<th>Situation: Should I leave stockers on wheat pasture for 60 days rather than remove stockers and combine wheat?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Costs</td>
</tr>
<tr>
<td>Interest on investment</td>
</tr>
<tr>
<td>Additional vet., feed, etc.</td>
</tr>
<tr>
<td>Reduced Returns</td>
</tr>
<tr>
<td>Steers: 640 lbs. x $1.57/lb.</td>
</tr>
<tr>
<td>Wheat sales: 30 bu. x $4.00/bu.</td>
</tr>
<tr>
<td>Total annual additional costs and reduced returns</td>
</tr>
<tr>
<td>Total annual additional returns and reduced costs</td>
</tr>
<tr>
<td>Net change in income (B - A)</td>
</tr>
</tbody>
</table>

Oklahoma Cooperative Extension Fact Sheets are also available on our website at: http://osufacts.okstate.edu
Rate of gain per steer = 2.5 lbs./day (60 days)
#1 - #2 Steers: 640 lbs. on March 1 at $1.57/lb = $1,004.80
#1 - #2 Steers: 790 lbs. on May 1 at $1.49/lb = $1,177.10
Wheat yield = 30 bu./acre
Wheat price = $4.00/bu.
Interest on investment (livestock) = $11.30/steer
Additional veterinary expenses, feed, etc. = $4/steer
Custom combining = $23/acre + ($0.23/ bu. over
21 bu.) = $25.07/acre
Custom hauling = $0.24/bu. x 30 bu./acre = $7.20/acre

Costs column is $1,209.37 and the total of the Additional
In our example, the total of the Additional Returns/Reduced
of the reduction in net returns if the change is adopted.
Conversely, a negative net change is an estimate
the potential increase in net returns if the change is made.
A positive net difference indicates
negative economic effects is an estimate of the net effect of
bottom of the column. The net difference between positive and
rates in the region.

Wheat sales not received when the grain is grazed out. The
is the value for the calves which could be sold now plus the
yield and prices shown are estimates based on current expec-
tations. Totaling the left column shows a figure of $1,140.10.
This represents the total negative economic impact of the
proposal on the farm operation.
In our example, additional returns are the added receipts
that will be received if the alternative plan is adopted. Additional
returns include the value of beef grown from March 1 to May
1 at a stocking rate of one steer per acre gaining two and a
half pounds per day. The listed weight is an average over all
animals, but the price is an actual steer price in the weight
range at the time of sale.
Reduced costs are those that will no longer be incurred
if the change is initiated. Reduced costs include the costs of
custom combining and hauling which are not incurred if the
wheat is grazed out. Rates should be representative of current
rates in the region.
Additional returns and reduced costs are totaled at the
bottom of the column. The net difference between positive and
negative economic effects is an estimate of the net effect of
making the proposed change. A positive net difference indicates
the potential increase in net returns if the change is made.
Conversely, a negative net change in income is an estimate of
the reduction in net returns if the change is adopted.
In our example, the total of the Additional Returns/Reduced
Costs column is $1,209.37 and the total of the Additional

Partial Budgeting Process
The success of the partial budget depends on the ac-
curacy of the information and estimates it contains. The farm
manager must collect pertinent, factual data about each
proposed change and provide reasonable estimates of future
prices, yields, gains, etc. Factual information includes current
production costs, costs of capital, current prices for products
such as grain or livestock, etc.
Estimating future unknowns, particularly prices is difficult.
The manager must estimate yields and prices to determine
the returns given up and received. Yield estimates can be
obtained from several sources. The best source is an indi-
vidual’s farm records. The farm records will show the history
of production. This, combined with an assessment of current
crop conditions, should closely predict future yields, given
normal weather and other conditions. Other sources of yield
estimates are neighboring farm histories, OSU research reports
showing average yields, and the farm manager’s previous
experience. A combination of these sources should provide
a close estimate of projected yields.
Future product prices are difficult to predict. Agricultural
economists, USDA statisticians, and futures markets all provide
information on the trend of prices and national crop condi-
tions. However, it will be unusual to find a predicted price for
a product on a particular day. Using published information
by the above sources as well as the manager’s intuition will
provide the best estimate on future product prices. Using a
range of prices – low, medium, and high – to evaluate changes
reveals the price sensitivity of the projected change.
The partial budget is ready to be developed after all per-
tinent data are assembled. A blank worksheet is included at
the end of this publication. The cost of the proposed change is
calculated for each of the categories. Only the costs and returns
that will change by adopting the alternate plan are analyzed in
the partial budget. The unit used to analyze the change may
be any size, for example, the whole crop, one acre of the crop,
one head of cattle, or the entire herd. The column totals show
the negative and positive economic aspects of the proposed
change. Subtract the left column total from the right column
total to obtain a net amount that reflects the change in net farm
income if the proposed alternative is adopted.
A positive net change says it would be economically ben-
eficial to proceed with the alternate plan. A negative amount
implies that it would not be economically profitable to proceed
with the change. Two notes of caution: 1) The value of this
analysis using partial budgeting is only as accurate as the data
used. 2) The partial budget does not necessarily include “cash
flow” tied to capital purchases (for instance, machinery). Cash
flow is addressed in OSU Extension Fact Sheet AGEC-751.
After the analysis has been performed, the result should be
multiplied as necessary to show the economic impact on the
entire farm situation.
Sensitivity Analysis

To determine the sensitivity of the results to the price and yield assumptions, it is useful to calculate the net change in income under different scenarios. Table 2 provides an example of a price sensitivity table. For a given steer price, grazing out becomes less profitable (or more unprofitable) as wheat price or yield increases. In our example, grazing out wheat is more profitable than harvesting wheat if grazeout steer prices are $1.40/lb. or greater. On the other hand, harvesting wheat is more profitable than grazing it out if grazeout stocker prices are lower or wheat prices or yields are higher.

Individual farmers should modify the estimates to more closely conform to their actual situations. Additionally, individual farmers may find some of the included costs not applicable to their situation or have other costs that should be included. Remember that the partial budget includes only the costs that change. Costs that cannot be affected should not be included in this analysis.

The breakeven price is calculated by setting the sum of Additional Costs plus Reduced Returns equal to the sum of Additional Returns and Reduced Costs. In this case, mathematically:

Additional Costs + Reduced Returns = Additional Returns + Reduced Costs

where:

Additional Costs = additional costs of maintaining stockers extra months = $15.30/a

Reduced Returns = stocker income if calves are sold in March plus wheat harvest income = price of stockers in March \((P_{sm})\) times their yield in weight in March \((Y_{sm})\) + (price of wheat times wheat yield) = \(P_{sm} \times Y_{sm} + \frac{30 \text{ bu.}}{a} \times \frac{4.00}{\text{bu}}\) = $1,124.80/a

Additional Returns = price of stockers in May \((P_{sg})\) times their yield in weight in May \((Y_{sg})\) = \(P_{sg} \times Y_{sg} = P_{sg} \times 790\)

Reduced Costs = wheat harvest costs = flat cost per acre + hauling costs + premium for more than 21 bushels per acre = \($23/a + ($0.24/bu \times 30 \text{ bu.}/a) + [(30 \text{ bu.} - 21 \text{ bu.}) \times .23/bu] = $3.27/a\)

Thus, the breakeven price for grazeout stockers is:

\[
$15.30/a + $1,124.80/a = (P_{sg} \times 790 \text{ lbs.}/a) + $32.27/a
\]

\[
P_{sg} = ($15.30/a + $1,124.80/a - $32.27/a)/790 \text{ lbs.}/a = $1.40/lb
\]

To solve for the breakeven price of wheat:

\[
$15.30/a + (640 \text{ lbs.}/a \times $1.57/lb) + (30 \text{ bu.}/a \times P_{w}) = ($1.49/lb \times 790 \text{ lbs.}/a) + $23/a + $.23/bu \times (Y_{w} - 21 \text{ bu.}/a) + (.24/bu \times Y_{w})
\]

\[
$1,020.10/a + ($4.00/bu \times Y_{w}) = $1,200.10/a + $.23/bu \times Y_{w} - $4.83/a + ($24/bu \times Y_{w})
\]

\[
$4.00/bu \times Y_{w} - $.47/bu \times Y_{w} = $175.17/a
\]

\[
$3.53/bu \times Y_{w} = $175.17/a
\]

\[
Y_{w} = $175.17/a/3.53/bu = 49.6 \text{ bu.}/a
\]

Conclusions

This partial budget fact sheet presents a simplified procedure to aid producers in everyday decision-making. This design is not for total farm planning, but rather to estimate the economic consequences of making a change in some phase of the farm operation. Partial budgeting is a step-by-step process for identifying the costs and returns that change due to alterations in the production process. Once these costs and returns are identified, they are weighed against each other to estimate the economic consequences of the change. The results can only be as good as the data used. Therefore, care should be taken when estimating values for the various categories. In addition, sensitivity tests for values such as yields and prices should be developed to highlight their effect on the ultimate outcome.

Table 2. Net change in income for graze-out stockers versus wheat harvest under different price scenarios using data from Table 1.

<table>
<thead>
<tr>
<th>Steer Sale Prices</th>
<th>Wheat $3.75/bu.</th>
<th>$4.00/bu.</th>
<th>$4.25/bu.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2.23)</td>
<td>76.77</td>
<td>155.77</td>
</tr>
<tr>
<td>$1.39/lb.</td>
<td></td>
<td>9.73</td>
<td>148.27</td>
</tr>
<tr>
<td>$1.49/lb.</td>
<td></td>
<td>61.77</td>
<td>140.77</td>
</tr>
<tr>
<td>$1.59/lb.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To calculate breakeven stocker weights, assume a stocker price and substitute stocker grazeout weight for the missing variable:

\[
$15.30/a + $1,124.80/a = (P_{w} \times Y_{w}) + $32.27/a
\]

Thus, the breakeven stocker weight at $1.49/lb. is:

\[
Y_{w} = ($15.30/a + $1,124.80/a - $32.27/a)/$1.49/lb. = 744 \text{ lbs.}/a
\]
Worksheet. Partial Budget Form

Situation:

<table>
<thead>
<tr>
<th>Additional Costs</th>
<th>Additional Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Returns</td>
<td>Reduced Costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total annual additional costs and reduced returns (A)</th>
<th>Total annual additional returns and reduced costs (B)</th>
</tr>
</thead>
</table>

\[\text{Net change in income (B - A)} \]

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, and Title IX of the Education Amendments of 1972 (Higher Education Act), the Americans with Disabilities Act of 1990, and other federal and state laws and regulations, does not discriminate on the basis of race, color, national origin, genetic information, sex, age, sexual orientation, gender identity, religion, disability, or status as a veteran, in any of its policies, practices or procedures. This provision includes, but is not limited to admissions, employment, financial aid, and educational services. The Director of Equal Opportunity, 408 Whitehurst, OSU, Stillwater, OK 74078-1035; Phone 405-744-5371; email: oee@okstate.edu has been designated to handle inquiries regarding non-discrimination policies. Director of Equal Opportunity. Any person (student, faculty, or staff) who believes that discriminatory practices have been engaged in based on gender may discuss his or her concerns and file informal or formal complaints of possible violations of Title IX with OSU's Title IX Coordinator 405-744-9154.

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Director of Oklahoma Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma. This publication is printed and issued by Oklahoma State University as authorized by the Vice President, Dean, and Director of the Division of Agricultural Sciences and Natural Resources and has been prepared and distributed at a cost of 20 cents per copy. Revised 01/18 GH